Polynômes unitaires de norme minimale

Première partie

1.a) Pour $j \in [\![1,n]\!]$, posons $Q_j = \prod_{\substack{1 \leqslant k \leqslant n \\ k \neq j}} (X-x_k)$. Q_j est un polynôme unitaire de degré n-1. On peut écrire $P = (X-x_j)Q_j$ avec $Q_j(x_j) \neq 0$, d'où $P' = Q_j + (X-x_j)Q_j'$ et $P'(x_j) = Q_j(x_j)$. On a ainsi $P_j = \frac{Q_j}{Q_j(x_j)}$.

 P_j est un polynôme de degré n-1.

b) Comme on a $Q_j(x_k) = 0$ pour $k \neq j$, on voit que :

$$\forall (j,k) \in [1,n]^2, \ P_j(x_k) = \delta_{j,k}$$
 (symbole de Kronecker).

On peut alors calculer:

$$\forall k \in [1, n], \ L_F(x_k) = \sum_{j=1}^n F(x_k) \delta_{j,k} = F(x_k).$$

c) On remarque que $\sum_{j=1}^{n} P_j$ prend la valeur 1 en chacun des points x_k , $k = 1 \dots n$. Le polynôme $1 - \sum_{j=1}^{n} P_j$ est de degré au plus n-1 et possède au moins n racines distinctes, il est donc nul. Ainsi :

$$\sum_{j=1}^{n} P_j = 1.$$

d) Les polynômes P_j , $1 \le j \le n$, sont dans \mathcal{E}_{n-1} , qui est de dimension n, et sont en nombre n. Montrons qu'ils constituent une famille libre. Soient $(\lambda_1,\ldots,\lambda_n)$ des scalaires tels que $\sum_{j=1}^n \lambda_j P_j = 0$. On aura alors $\forall k \in [\![1,n]\!]$, $\sum_{j=1}^n \lambda_j P_j(x_k) = 0$. Or $\sum_{j=1}^n \lambda_j P_j(x_k) = \sum_{j=1}^n \lambda_j \delta_{j,k} = \lambda_k$. On a donc $\forall k \in [\![1,n]\!]$, $\lambda_k = 0$. Il en résulte que :

la famille
$$P_1, \ldots, P_n$$
 est une base de \mathcal{E}_{n-1} .

2. La formule $\forall (j,k) \in [1,n]^2$, $P_j(x_k) = \delta_{j,k}$ s'écrit maintenant

$$\forall (j,k) \in [1,n]^2, \ \delta_{j,k} = \sum_{i=0}^{n-1} b_{i,j} x_k^i = \sum_{i=0}^{n-1} B_{i+1,j} V_{k,i+1} = \sum_{\ell=1}^n B_{\ell,j} V_{k,\ell} = (VB)_{k,j} \quad \text{soit} \quad VB = I_n.$$

Ceci suffit à prouver que :

V est inversible et $V^{-1} = B$.

3.a) Le polynôme Q_j (notation introduite en **1.a)**) est unitaire, et $P'(x_j) = Q_j(x_j)$. Comme $P_j = \frac{Q_j}{Q_j(x_j)}$ on voit que le coefficient dominant de P_j est :

$$b_{n-1,j} = \frac{1}{P'(x_j)}.$$

On peut alors écrire $\sum_{k=1}^{n} \frac{(x_k)^j}{P'(x_k)} = \sum_{k=1}^{n} b_{n-1,k}(x_k)^j = \sum_{k=1}^{n} B_{n,k}V_{k,j+1} = (BV)_{n,j+1}$. On en déduit :

$$\sum_{k=1}^{n} \frac{(x_k)^j}{P'(x_k)} = \delta_{n,j+1}.$$

Remarque : la décomposition en éléments simples de la fraction rationnelle $\frac{X^j}{P}$ aurait permis d'obtenir le même résultat.

b) On peut alors calculer:

$$\sum_{k=1}^{n} \frac{(X - x_k)^{n-1}}{P'(x_k)} = \sum_{k=1}^{n} \frac{\sum_{j=0}^{n-1} (-1)^j \mathcal{C}_{n-1}^j (x_k)^j X^{n-1-j}}{P'(x_k)} = \sum_{j=0}^{n-1} (-1)^j \mathcal{C}_{n-1}^j \left(\sum_{k=1}^{n} \frac{(x_k)^j}{P'(x_k)}\right) X^{n-1-j}$$
$$= \sum_{j=0}^{n-1} (-1)^j \mathcal{C}_{n-1}^j \delta_{n,j+1} X^{n-1-j} = \sum_{j=0}^{n-1} (-1)^j \mathcal{C}_{n-1}^j \delta_{n-1,j} X^{n-1-j}$$
$$= (-1)^{n-1}.$$

$$\sum_{k=1}^{n} \frac{(X-x_k)^{n-1}}{P'(x_k)}$$
 est un polynôme constant égal à $(-1)^{n-1}$.

Deuxième partie

4. a) Les applications
$$Q \mapsto N(Q)$$
 et $Q \mapsto \|Q\|_K$ sont définies sur \mathcal{E}_d et à valeurs dans \mathbb{R}^+ . Soit $Q \in \mathcal{E}_d$ défini par $Q = \sum_{i=0}^d a_i X^i$ et $\lambda \in \mathbb{C}$. On voit que $\lambda Q = \sum_{i=0}^d \lambda a_i X^i$ donc

$$N(\lambda Q) = \sup_{0 \le i \le d} |\lambda a_i| = |\lambda| \sup_{0 \le i \le d} |a_i| = |\lambda| N(Q).$$

De même

$$\|\lambda Q\|_K = \sup_{z \in K} |\lambda Q(z)| = |\lambda| \sup_{z \in K} |Q(z)| = |\lambda| \|Q\|_K.$$

Soient
$$Q = \sum_{i=0}^{d} a_i X^i$$
 et $R = \sum_{i=0}^{d} b_i X^i$. On a $Q + R = \sum_{i=0}^{d} (a_i + b_i) X^i$ donc
$$N(Q + R) = \sup_{0 \le i \le d} |a_i + b_i| \le \sup_{0 \le i \le d} |a_i| + \sup_{0 \le i \le d} |b_i| = N(Q) + N(R).$$

De même

$$\|Q + R\|_K = \sup_{z \in K} |Q(z) + R(z)| \leqslant \sup_{z \in K} |Q(z)| + \sup_{z \in K} |R(z)| = \|Q\|_K + \|R\|_K.$$

Enfin soit $Q = \sum_{i=0}^{d} a_i X^i$. Si N(Q) = 0, tous les coefficients a_i , $0 \le i \le d$ sont nuls et donc Q = 0.

De même si $||Q||_K = 0$, Q admet tous les points de K comme racines. Comme il y en a au moins d+1 et que le degré de Q est au plus égal à d ceci entraı̂ne encore Q=0.

$$Q \mapsto N(Q)$$
 et $Q \mapsto ||Q||_K$ sont des normes sur \mathcal{E}_d .

Comme \mathcal{E}_d est de dimensions finie, toutes les normes sur \mathcal{E}_d sont équivalentes. En particulier :

$$Q \mapsto N(Q)$$
 et $Q \mapsto ||Q||_K$ sont des normes équivalentes.

- b) La fonction $Q \mapsto \|Q\|_K$ est évidemment continue sur l'espace normé $(\mathcal{E}_d, \|\ \|_K)$ puisqu'elle y est lipschitzienne de rapport 1. En effet on déduit de l'inégalité triangulaire que $|\|Q\|_K \|R\|_K| \leq \|Q R\|_K$.
- **5. a)** Soit $Q = \sum_{i=0}^{d} a_i X^i$. On peut écrire

$$\forall z \in K, \ |Q(z)| = \left|\sum_{i=0}^d a_i z^i\right| \leqslant \sum_{i=0}^d |a_i| |z|^i \leqslant \sum_{i=0}^d \sup_{0 \leqslant i \leqslant d} |a_i| \rho^i = N(Q) \sum_{i=0}^d \rho^i.$$

On en déduit que :

$$\sup_{\substack{Q \in \mathcal{E}_d \\ Q \neq 0}} \frac{\|Q\|_K}{N(Q)} \leqslant \sum_{i=0}^d \rho^i.$$

b) Soit toujours $Q = \sum_{i=0}^{d} a_i X^i$. Notant (comme en 2.) :

$$V = \begin{pmatrix} 1 & x_1 & \cdots & x_1^d \\ 1 & x_2 & \cdots & x_2^d \\ \vdots & \vdots & & \vdots \\ 1 & x_{d+1} & \cdots & x_{d+1}^d \end{pmatrix} \text{ et } B = \begin{pmatrix} b_{0,1} & b_{0,2} & \cdots & b_{0,d+1} \\ b_{1,1} & b_{1,2} & \cdots & b_{1,d+1} \\ \vdots & \vdots & & \vdots \\ b_{d,1} & b_{d,2} & \cdots & b_{d,d+1} \end{pmatrix}$$

on a $B = V^{-1}$. Pour tout $j \in [1, d+1]$ on a $Q(x_j) = \sum_{i=0}^d a_i x_j^i$ ce qui peut se résumer à la formule matricielle .

$$\begin{pmatrix} Q(x_1) \\ Q(x_2) \\ \vdots \\ Q(x_{d+1}) \end{pmatrix} = V \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{pmatrix} \quad \text{d'où} \quad \begin{pmatrix} a_0 \\ a_1 \\ \vdots \\ a_d \end{pmatrix} = B \begin{pmatrix} Q(x_1) \\ Q(x_2) \\ \vdots \\ Q(x_{d+1}) \end{pmatrix}$$

soit pour tout entier $\ell \in [0, d]$: $a_l = \sum_{k=1}^{d+1} b_{l-1,k} Q(x_k)$. On en tire

$$\forall \ell \in [0, d], |a_{\ell}| \leq \sum_{k=1}^{d+1} |b_{l-1,k}| |Q(x_k)| \leq (d+1)\beta ||Q||_K.$$

On a donc bien prouvé que :

$$\sup_{\substack{Q \in \mathcal{E}_d \\ Q \neq 0}} \frac{N(Q)}{\|Q\|_K} \leqslant \beta(d+1).$$

Troisième partie

6. a) Le polynôme $D = X^d$ est élément de \mathcal{U}_d et $\forall z \in K$, $|D(z)| = |z|^d \leqslant \rho^d$ donc $||D||_K \leqslant \rho^d$. On en déduit que $\inf_{Q \in \mathcal{U}_d} ||Q||_K \leqslant \rho^d$. Comme d'autre part toute norme est positive, on a bien :

$$0 \leqslant m \leqslant \rho^d.$$

$$\mathbf{b)} \text{ On peut décomposer } \underbrace{\left\{ \|Q\|_K \;\middle|\; Q \in \mathcal{U}_d \right\}}_{\mathcal{A}} = \underbrace{\left\{ \|Q\|_K \;\middle|\; \begin{array}{c} Q \in \mathcal{U}_d \\ \|Q\|_K \leqslant \rho^d \end{array} \right\}}_{\mathcal{B}} \cup \underbrace{\left\{ \|Q\|_K \;\middle|\; \begin{array}{c} Q \in \mathcal{U}_d \\ \|Q\|_K > \rho^d \end{array} \right\}}_{\mathcal{C}}.$$

Par définition $m = \inf A$. On veut prouver $\inf A = \inf B$.

- \diamond C'est évident si \mathcal{C} est vide.
- \diamond Sinon inf $\mathcal{B} \leqslant \rho^d \leqslant \inf \mathcal{C} \Rightarrow \inf \mathcal{A} = \inf (\inf \mathcal{B}, \inf \mathcal{C}) = \inf \mathcal{B}$.

$$\inf_{\substack{Q \in \mathcal{U}_d \\ \|Q\|_K \leqslant \rho^d}} \|Q\|_K = m.$$

c) L'application : $\mathcal{E}_d \to \mathbb{C}$ est 1-lipschitzienne si l'on munit \mathcal{E}_d de la norme N. Elle est donc $\sum_{i=0}^d a_i X^i \mapsto a_d$

continue, et \mathcal{U}_d , image réciproque du fermé $\{1\}$, est fermé. Vue l'équivalence des normes c'est aussi un fermé de l'espace vectoriel normé $(\mathcal{E}_d, \| \|_K)$.

L'ensemble $\{Q \mid \|Q\|_K \leqslant \rho^d\}$ est la boule fermée de centre 0 et de rayon ρ^d de l'espace vectoriel normé $(\mathcal{E}_d, \|\ \|_k)$. C'est donc un compact. L'intersection d'un fermé et d'un compact est un compact. Sur ce compact la fonction continue et à valeurs réelles $Q \mapsto \|Q\|_K$ atteint sa borne inférieure m. Donc :

$$\exists Q_0 \in \mathcal{U}_d \text{ tel que } ||Q_0||_K = m.$$

Quatrième partie

7. Soit $|c_k| = \alpha \neq 0$ et $\theta \in \mathbb{R}$ tel que $c_k = \alpha e^{i\theta}$. Choisissons par exemple $z = z_0 + \left(\frac{1}{\alpha}\right)^{\frac{1}{k}} e^{-\frac{i\theta}{k}}$. On calcule $Q(z) = 1 + \alpha e^{i\theta} \frac{1}{\alpha} e^{-i\theta} = 2$ et on a bien :

$$2 = |Q(z)| > |Q(z_0)| = 1.$$

8. a) Le polynôme Q-1 est non nul et il a la racine z_0 . Soit k l'ordre de cette racine, on peut écrire $Q-1=(X-z_0)^kS$ où S est un polynôme non nul en z_0 . Posons $c_k=S(z_0)$, le polynôme $\frac{S}{c_k}-1$ a la racine z_0 et peut donc s'écrire à son tour $\frac{S}{c_k}-1=(X-z_0)R$. On a $Q-1=c_k(X-z_0)^k$ $(1+(X-z_0)R)$ soit :

$$Q = 1 + c_k (X - z_0)^k + c_k (X - z_0)^{k+1} R$$
 avec $k \in \mathbb{N}^*$ et $c_k \in \mathbb{C}^*$.

b) D'après la relation précédente il suffit de trouver un complexe z tel que $|z-z_0|=r$ et que $c_k(z-z_0)^k$ soit un réel positif. Si l'on note $c_k = \alpha e^{i\theta}$ comme en 7. avec $\alpha > 0$ on voit que $z = z_0 + r e^{-\frac{i\bar{\theta}}{k}}$ convient. En effet on a alors

$$Q(z) = 1 + \alpha e^{i\theta} \left(r e^{-\frac{i\theta}{k}} \right)^k + \alpha e^{i\theta} \left(r e^{-\frac{i\theta}{k}} \right)^k (z - z_0) R(z) = 1 + \alpha r^k + \alpha r^k (z - z_0) R(z)$$

qui est bien égal à $1 + |c_k||z - z_0|^k + |c_k||z - z_0|^k (z - z_0)R(z)$.

c) Si R est le polynôme nul (ce qui n'est pas interdit par l'énoncé), le z trouvé en b) convient puisque $|z-z_0|=r$ et $|Q(z)|=1+|c_k||z-z_0|^k>1=|Q(z_0)|$. Sinon la fonction continue $z\mapsto |R(z)|$ étant bornée sur le compact $\mathcal{B}_f(z_0,r)$ on peut poser $M=\sup_{|z-z_0|\leqslant r}|R(z)|$ et $r'=\min\left(r,\frac{1}{2M}\right)$. Appliquons alors **b**) en faisant jouer le rôle de r par r'. On trouve ainsi un z tel que $z-z_0=r'$ et $Q(z)=1+a+a(z-z_0)R(z)$ avec $a=|c_k||z-z_0|^k$. On a alors $|Q(z)|\geqslant 1+a-a|(z-z_0)R(z)|$. Comme par construction $|(z-z_0)R(z)|=r'|R(z)|\leqslant \frac{1}{2M}M=\frac{1}{2}$ on a bien :

$$|Q(z)| \ge 1 + \frac{a}{2} > 1 = |Q(z_0)| \text{ avec } |z - z_0| = r' \le r.$$

- **9. a)** Soit $Q \in \mathcal{E}_d$ non constant, $z_0 \in \mathbb{C}$ et r > 0. Distinguous deux cas:
 - $\diamond Q(z_0) = 0$. Comme Q n'est pas nul la fonction polynôme associée n'est pas nulle sur l'ensemble infini $\mathcal{B}_f(z_0, r)$. On peut donc trouver $z \in \mathbb{C}$ tel que $|z - z_0| \leq r$ et $|Q(z)| > |Q(z_0)|$.
 - $\diamond Q(z_0) \neq 0$. Posons $T = \frac{Q}{Q(z_0)}$ et appliquons à T le résultat de 8.c): on trouve un z vérifiant

$$|z-z_0| \le r \text{ et } |T(z)| > |T(z_0)| \text{ soit } \frac{|Q(z)|}{|Q(z_0)|} > \frac{|Q(z_0)|}{|Q(z_0)|} \text{ et donc } |Q(z)| > |Q(z_0)|.$$

$$\forall Q \in \mathcal{E}_d \text{ non constant, } \forall z_0 \in \mathbb{C}, \ \forall r > 0, \ \exists z \in \mathcal{B}_f(z_0, r) \text{ tel que } |Q(z)| > |Q(z_0)|.$$

- b) Remarquons tout d'abord que l'inégalité $\sup_{|z| \le 1} |Q(z)| \ge \sup_{|z| = 1} |Q(z)|$ découle directement du fait que le cercle unité est inclus dans la boule unité fermée. Il reste à montrer $\sup_{|z| \le 1} |Q(z)| \le \sup_{|z| = 1} |Q(z)|$.
 - $\diamond\,$ Si le polynôme Q est constant le résultat est trivial.
 - \diamond Supposons Q non constant. La fonction réelle continue $z \mapsto |Q(z)|$ atteint son maximum sur la boule unité fermée en un point z_0 . Il nous suffit de montrer que $|z_0|=1$. Supposons par l'absurde que $|z_0| < 1$ et appliquons le **a**) avec Q, z_0 et $r = 1 - |z_0|$. On trouve un z pour lequel $|Q(z)| > |Q(z_0)|$ et $|z - z_0| \le 1 - |z_0|$. Mais alors $|z| = |z_0 + (z - z_0)| \le |z_0| + |z - z_0| \le 1$ ce qui est incompatible avec $|Q(z)| > |Q(z_0)|$.

$$\forall Q \in \mathcal{E}_d, \sup_{|z| \le 1} |Q(z)| = \sup_{|z|=1} |Q(z)|.$$

c) Au polynôme $Q = \sum_{i=0}^{d} a_i X^i$ associons le polynôme $\widetilde{Q} \in \mathcal{E}_d$ défini par $\widetilde{Q} = \sum_{i=0}^{d} a_{d-i} X^i = \sum_{i=0}^{d} a_i X^{d-i}$. Pour tout $z \in \mathbb{C}^*$ on a $\frac{Q(z)}{z^d} = \widetilde{Q}\left(\frac{1}{z}\right)$.

Quand z décrit le cercle unité il en est de même de $\frac{1}{z}$, on voit donc que $\sup_{|z|=1}|Q(z)|=\sup_{|z|=1}|\widetilde{Q}(z)|$. Pour tout z tel que $|z|\geqslant 1$ on a $\left|\frac{1}{z}\right|\leqslant 1$ et $\left|\frac{Q(z)}{z^d}\right|=\left|\widetilde{Q}\left(\frac{1}{z}\right)\right|\leqslant \sup_{|z'|\leqslant 1}|\widetilde{Q}(z')|=\sup_{|z'|=1}|\widetilde{Q}(z')|=\sup_{|z|=1}|Q(z)|$. On a ainsi prouvé que $\sup_{|z|\geqslant 1}\left|\frac{Q(z)}{z^d}\right|\leqslant \sup_{|z|=1}|Q(z)|$. L'inégalité inverse est triviale puisque lorsque |z|=1 on a $|z|\geqslant 1$ et $|Q(z)|=\left|\frac{Q(z)}{z^d}\right|$.

d) On voit que $||Q_0||_K = 1$. Pour prouver l'égalité demandée il suffit de montrer que pour tout polynôme $Q \in \mathcal{U}_d$ on a $||Q||_K \geqslant 1$, soit avec le choix fait pour K dans cette question :

 $\forall Q \in \mathcal{U}_d$, $\sup_{|z| \le 1} |Q(z)| \ge 1$ ou encore avec **c**) : $\forall Q \in \mathcal{U}_d$, $\sup_{|z| \ge 1} \left| \frac{Q(z)}{z^d} \right| \ge 1$. Ce dernier résultat découle du fait

que, Q étant unitaire de degré d, $Q(x) \underset{+\infty}{\sim} x^d$ et donc pour z réel positif : $\lim_{z \to +\infty} \frac{Q(z)}{z^d} = 1$.

Lorsque $K = \{z \mid |z| \leq 1\}$ la borne m vaut 1 et elle est atteinte pour $Q_0 = X^d$.

Cinquième partie

- 10. La relation $|z_0+z_1|=|z_0|+|z_1|$ élevée au carré devient $(z_0+z_1)(\overline{z_0}+\overline{z_1})=z_0\overline{z_0}+z_1\overline{z_1}+2|z_0z_1|$ soit après simplification : $\Re(z_0\overline{z_1})=|z_0\overline{z_1}|$. Les seuls complexes ayant leur partie réelle égale à leur module sont les réels positifs, donc $\exists \alpha \in \mathbb{R}^+$ tel que $z_0\overline{z_1}=\alpha$. On en déduit puisque $z_1\neq 0$ que $z_0=\lambda z_1$ avec $\lambda=\frac{\alpha}{|z_1|^2}$. On a évidemment $\lambda\geqslant 0$, et la non nullité de z_0 garantit alors $\lambda>0$.
- **11.a)** On remarquera que la formule $Q_t = tQ_1 + (1-t)Q_0$ est encore valable pour $t \in \{0,1\}$. On peut écrire $\forall z \in K$, $|Q_t(z)| = |tQ_1(z) + (1-t)Q_0(z)| \leq |t||Q_1(z)| + |1-t||Q_0(z)| \leq m$ puisque $t \geq 0$, $1-t \geq 0$, $||Q_0||_K = ||Q_1||_K = m$. On a donc $||Q_t||_K \leq m$. D'autre part le polynôme Q_t est dans \mathcal{U}_d puisque son coefficient dominant est $t \cdot 1 + (1-t) \cdot 1$ et donc $||Q_t||_K \geq m$. Finalement :

$$\forall t \in [0,1], \ \|Q_t\|_K = m.$$

- $\mathbf{b)} \text{ On a } m = |Q_t(z)| = |tQ_1(z) + (1-t)Q_0(z)| \leqslant t|Q_1(z)| + (1-t)|Q_0(z)| \text{ et } \begin{cases} |Q_0(z)| \leqslant \|Q_0\|_K = m \\ |Q_1(z)| \leqslant \|Q_1\|_K = m. \end{cases}$ Ces deux inégalités sont donc des égalités, et en outre $|tQ_1(z) + (1-t)Q_0(z)| = t|Q_1(z)| + (1-t)|Q_0(z)|.$ D'après $\mathbf{10}$ il existe alors $\lambda_z > 0$ tel que $Q_1(z) = \frac{\lambda_z(1-t)}{t}Q_0(z)$ autrement dit il existe un réel $\mu_z > 0$ tel que $Q_1(z) = \mu_z Q_0(z)$. L'égalité des modules impose alors $\mu_z = 1$ et finalement $Q_0(z) = Q_1(z)$.
- c) D'après la question précédente tout point de K où $|Q_t|$ atteint son maximum est une racine de $Q_0 Q_1$. Comme les polynômes Q_0 et Q_1 sont unitaires de degré d, leur différence est de degré au plus d-1 et ne peut donc avoir plus de d-1 racines, donc :

$$\forall t \in]0,1[, \operatorname{Card}(\mathcal{M}(Q_t)) < d.]$$

12. a) Soit $n \leq d$ le cardinal de $\mathcal{M}(Q)$ et x_1, \ldots, x_n ses éléments. Reprenant les notations de la première partie on pose $L = L_Q = \sum_{i=1}^{n} Q(x_i) P_i$. D'après **I** 1.b) on a bien $L \in \mathcal{E}_{n-1} \subset \mathcal{E}_{d-1}$ et quel que soit $k \in [1, n], L(x_k) = Q(x_k).$

On a ainsi défini
$$L \in \mathcal{E}_{d-1}$$
 tel que $\forall z \in \mathcal{M}(Q), \ L(z) = Q(z)$.

b) Comme L est de degré au plus d-1 le polynôme Q_p est encore dans \mathcal{U}_d donc $\|Q_p\|_K\geqslant m=\|Q\|_K$. La compacité de K garantit alors l'existence d'un point $z_p\in K$ tel que $|Q_p(z_p)|=\|Q_p\|_K$. Ainsi :

$$\forall p \in \mathbb{N}^*, \ \exists z_p \in K \text{ tel que } |Q_p(z_p)| \geqslant ||Q||_K$$

c) On a $|Q_{n_p}(z_{n_p})| = \left|Q(z_{n_p}) - \frac{1}{n_p}L(z_{n_p})\right|$. La fonction L est bornée sur K et la fonction Q est continue. Lorsque p tend vers $+\infty$, n_p aussi ; z_{n_p} tend vers ℓ et le second membre de cette égalité tend vers $|Q(\ell)|$. Comme le premier reste minoré par $||Q||_K$ on en déduit $|Q(\ell)| \ge ||Q||_K$ et donc par définition de la borne supérieure :

$$|Q(\ell)| = ||Q||_K.$$

Cela peut encore se dire $\ell \in \mathcal{M}(Q)$ et donc par construction de L:

$$L(\ell) = Q(\ell).$$

d) Comme $|Q(\ell)| = m$, $Q(\ell)$ est non nul et on peut poser $\varepsilon_p = \frac{Q(z_{n_p})}{Q(\ell)} - 1$. On a $Q(z_{n_p}) = Q(\ell)(1 + \varepsilon_p)$ et $Q(\ell) = \sup_{z \in K} |Q(z)| \text{ garantit alors } \boxed{|1 + \varepsilon_p| \leqslant 1}. \text{ D'autre part } \lim_{p \to +\infty} Q(z_{n_p}) = Q(\ell) \text{ montre que } \boxed{\lim_{p \to +\infty} \varepsilon_p = 0}.$ De même pour p assez grand $Q(z_{n_p})$ est non nul (puisque sa limite l'est) et on peut donc poser $\varepsilon_p' = \frac{L(z_{n_p})}{Q(z_{n_p})} - 1$. On a alors $L(z_{n_p}) = Q(z_{n_p})(1 + \varepsilon_p') = Q(\ell)(1 + \varepsilon_p)(1 + \varepsilon_p')$. Puisque $\lim_{p \to +\infty} L(z_{n_p}) = L(\ell) = Q(\ell) = \lim_{p \to +\infty} Q(z_{n_p})$ on a aussi $\lim_{p \to +\infty} \varepsilon' = 0$. On peut alors écrire

$$Q_{n_p}(z_{n_p}) = Q(z_{n_p}) - \frac{1}{n_p} L(z_{n_p}) = Q(\ell)(1 + \varepsilon_p) \left(1 - \frac{(1 + \varepsilon'_p)}{n_p}\right).$$

et par conséquent

$$|Q_{n_p}(z_{n_p})| \leqslant |Q(\ell)||1 + \varepsilon_p| \left|1 - \frac{(1 + \varepsilon_p')}{n_p}\right| \leqslant |Q(\ell)||1 + \varepsilon_p| \left(\left(1 - \frac{1}{n_p}\right) + \frac{|\varepsilon_p'|}{n_p}\right).$$

Comme $|1 + \varepsilon_p| \leq 1$ et que pour p assez grand $|\varepsilon_p'| < 1$, on en déduit que :

pour
$$p$$
 assez grand $|Q_{n_p}(z_{n_p})| < ||Q||_K$.

Ce résultat est en contradiction avec la condition $\forall p \in \mathbb{N}^*, |Q_p(z_p)| \ge ||Q||_K$ qui a présidé au choix des z_p ; l'hypothèse « $\exists Q \in \mathcal{U}_d$ tel que $\operatorname{Card}(\mathcal{M}(Q)) \leqslant d$ » faite au début de la question 12. est donc fausse

13. D'après la question 11., s'il existe deux polynômes Q_0 et Q_1 de \mathcal{U}_d tels que $\|Q_0\|_K = m$ et $\|Q_1\|_K = m$, le polynôme $T = \frac{Q_0 + Q_1}{2}$ (par exemple) est encore un polynôme de \mathcal{U}_d vérifiant $||T||_K = m$ et $\operatorname{Card}(\mathcal{M}(T)) < d$. On vient de voir que c'est impossible, et donc :

il y a unicité du polynôme
$$Q_0$$
 de \mathcal{U}_d tel que $||Q_0||_K = m$.