COMPOSITION DE MATHÉMATIQUES - B - (X)

(Durée : 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Exposant de Hölder ponctuel d'une fonction continue

N désigne l'ensemble des entiers naturels et R celui des nombres réels.

On note \mathcal{C} l'espace vectoriel réel des fonctions continues définies sur l'intervalle compact [0,1] et à valeurs dans \mathbf{R} . Cet espace est muni de la norme $\|\cdot\|_{\infty}$ définie pour tout $f \in \mathcal{C}$, par $\|f\|_{\infty} = \sup_{x \in [0,1]} |f(x)|$.

On note C_0 le sous-espace de C formé par les fonctions f telles que f(0) = f(1) = 0.

 \log_2 est la fonction définie pour $t \in]0, +\infty[$, par $\log_2 t = \frac{\ln t}{\ln 2}$, où ln est le logarithme népérien.

Première partie : définition de l'exposant de Hölder ponctuel

Soit $x_0 \in [0,1]$. Pour tout $s \in [0,1[$, on désigne par $\Gamma^s(x_0)$ le sous-ensemble de \mathcal{C} formé par les fonctions f qui vérifient :

$$\sup_{x \in [0,1] \setminus \{x_0\}} \frac{\left| f(x) - f(x_0) \right|}{|x - x_0|^s} < +\infty.$$

1a. Montrer que $\Gamma^s(x_0)$ est un sous-espace vectoriel de \mathcal{C} , puis que, pour tous réels s_1 et s_2 vérifiant $0 \le s_1 \le s_2 < 1$, l'on a $\Gamma^{s_2}(x_0) \subset \Gamma^{s_1}(x_0)$. Enfin, déterminer $\Gamma^0(x_0)$.

1b. Soit $f \in \mathcal{C}$. Si f est dérivable en x_0 , montrer que $f \in \Gamma^s(x_0)$ pour tout $s \in [0,1[$.

1c. Montrer que pour tout $x_0 \in]0,1[$, il existe $f \in \mathcal{C}$ non dérivable en x_0 tel que pour tout $s \in [0,1[$, $f \in \Gamma^s(x_0)$.

Pour tout $f \in \mathcal{C}$ et tout $x_0 \in [0,1]$, on pose

$$\alpha_f(x_0) = \sup\{s \in [0,1] \mid f \in \Gamma^s(x_0)\}\$$
.

Le réel $\alpha_f(x_0)$ est appelé exposant de Hölder ponctuel de f en x_0 ; il permet de mesurer finement la régularité locale de f au voisinage du point x_0 .

2. Soit $p:[0,1]\to \mathbf{R}, x\mapsto \sqrt{|1-4x^2|}$. Déterminer l'exposant de Hölder ponctuel de p en $\frac{1}{2}$.

Pour tout $f \in \mathcal{C}$, on définit la fonction $\omega_f : [0,1] \to \mathbf{R}_+$ par

$$\omega_f(h) = \sup\{|f(x) - f(y)| | x, y \in [0, 1] \text{ et } |x - y| \le h\}$$
.

- **3a.** Montrer que ω_f est croissante, et continue en 0.
- **3b.** Montrer que pour tous $h, h' \in [0, 1]$ tels que $h \leq h'$, ω_f vérifie

$$\omega_f(h') \le \omega_f(h) + \omega_f(h'-h)$$
.

3c. En déduire que ω_f est continue sur [0,1].

4a. Soit $s \in [0,1[$. On suppose que la fonction $h \mapsto \frac{\omega_f(h)}{h^s}$ est bornée sur [0,1]. Pour tout $x_0 \in [0,1]$, montrer que $f \in \Gamma^s(x_0)$.

4b. Soit $q:[0,1] \to \mathbf{R}$ définie par

$$\begin{cases} q(x) = x \cos\left(\frac{\pi}{x}\right) \text{ pour } x > 0, \\ q(0) = 0. \end{cases}$$

Montrer que pour tout $x_0 \in [0, 1]$, $\alpha_q(x_0) = 1$, mais que $\frac{\omega_q(h)}{\sqrt{h}}$ ne tend pas vers 0 quand h tend vers 0.

Deuxième partie : le système de Schauder

On note $\mathcal{I} = \{(j,k) \in \mathbf{N}^2 \mid j \in \mathbf{N} \text{ et } 0 \leq k < 2^j\}$; pour $j \in \mathbf{N}$, on désigne par \mathcal{T}_j l'ensemble

$$\mathcal{T}_j = \left\{ k \in \mathbf{N} \mid 0 \le k < 2^j \right\}.$$

Pour tout $(j,k) \in \mathcal{I}$, soit $\theta_{j,k} : [0,1] \to [0,1]$ la fonction de \mathcal{C}_0 , définie pour tout $x \in [0,1]$ par

$$\theta_{j,k}(x) = \begin{cases} 1 - |2^{j+1}x - 2k - 1| & \text{si } x \in [k2^{-j}, (k+1)2^{-j}] \\ 0 & \text{sinon.} \end{cases}$$

La famille des fonctions $(\theta_{j,k})_{(j,k)\in\mathcal{I}}$ est appelée le système de Schauder.

On note $\widetilde{k}_j(x)$ la partie entière du réel $2^j x$, c'est donc l'unique entier tel que

$$\widetilde{k}_i(x) \le 2^j x < \widetilde{k}_i(x) + 1$$
.

5a. Montrer que pour tout $j \in \mathbf{N}$ et tout $k \in \mathcal{T}_{j+1}$, il existe un unique entier $k' \in \mathcal{T}_j$ tel que

$$[k2^{-j-1}, (k+1)2^{-j-1}] \subset [k'2^{-j}, (k'+1)2^{-j}]$$
.

On précisera le lien entre k et k'.

5b. Calculer $\theta_{j,k}(\ell 2^{-j-1})$ pour tous $j \in \mathbb{N}$, $k \in \mathcal{T}_j$, $\ell \in \mathcal{T}_{j+1}$.

5c. Montrer que pour tout $(j,k) \in \mathcal{I}$, la fonction $\theta_{j,k}$ est continue, affine sur chaque intervalle de la forme $[\ell 2^{-n}, (\ell+1)2^{-n}]$ où n > j et $\ell \in \mathcal{T}_n$.

5d. Prouver que pour tous $(j,k) \in \mathcal{I}$ et $(x,y) \in [0,1]^2$, on a

$$|\theta_{j,k}(x) - \theta_{j,k}(y)| \le 2^{j+1}|x - y|.$$

Dans le reste de cette partie f est un élément de \mathcal{C}_0 .

Pour tout $n \in \mathbb{N}$, soit $S_n f$ la fonction de \mathcal{C}_0 définie par

$$S_n f = \sum_{j=0}^n \sum_{k \in \mathcal{T}_j} c_{j,k}(f) \,\theta_{j,k} ,$$

où, pour tout $(j,k) \in \mathcal{I}$, on a posé

$$c_{j,k}(f) = f\left(\left(k + \frac{1}{2}\right)2^{-j}\right) - \frac{f\left(k2^{-j}\right) + f\left((k+1)2^{-j}\right)}{2}.$$

6. Montrer que $\lim_{j \to +\infty} \max_{k \in T_j} |c_{j,k}(f)| = 0$.

7a. Pour tout $(j,k) \in \mathcal{I}$, $(i,\ell) \in \mathcal{I}$, calculer $c_{j,k}(\theta_{i,\ell})$.

7b. Soit $a_{j,k}$ une famille de réels indexée par $(j,k) \in \mathcal{I}$. On note $b_j = \max_{k \in \mathcal{I}_j} |a_{j,k}|$, et on suppose que la série $\sum b_j$ est convergente.

Pour tout $j \in \mathbf{N}$, soit f_j^a la fonction définie par

$$f_j^a(x) = \sum_{k \in \mathcal{T}_j} a_{j,k} \theta_{j,k}(x) .$$

Montrer que la série $\sum f_j^a$ est uniformément convergente sur [0,1] vers une fonction noté f^a , qui appartient à \mathcal{C}_0 et qui vérifie, pour tout $(j,k) \in \mathcal{I}$, $c_{j,k}(f^a) = a_{j,k}$.

8a. On suppose f de classe \mathcal{C}^1 . Montrer qu'il existe une constante $M \geq 0$ telle que pour tous $(j,k) \in \mathcal{I}, |c_{j,k}(f)| \leq M2^{-j}$.

En déduire que la suite de fonction $S_n f$ est uniformément convergente sur [0,1] lorsque n tend vers ∞ .

8b. On suppose f de classe C^2 . Montrer qu'il existe une constante $M' \ge 0$ telle que pour tous $(j,k) \in \mathcal{I}, |c_{j,k}(f)| \le M'4^{-j}$.

9a. Montrer que pour tout $n \in \mathbb{N}$ et tout $\ell \in \mathcal{T}_{n+1}$, la fonction $S_n f$ est affine sur l'intervalle $\lceil \ell 2^{-n-1}, (\ell+1)2^{-n-1} \rceil$.

9b. Soit $n \in \mathbb{N}$. On suppose que pour tout $\ell \in \mathcal{T}_n$, $(S_{n-1}f)(\ell 2^{-n}) = f(\ell 2^{-n})$. Montrer que l'on a aussi que pour tout $\ell \in \mathcal{T}_{n+1}$, $(S_nf)(\ell 2^{-n-1}) = f(\ell 2^{-n-1})$.

On pourra distinguer les cas suivant la parité de ℓ .

9c. En déduire que pour tout $n \in \mathbb{N}$ et tout $\ell \in \mathcal{T}_{n+1}$, $(S_n f)(\ell 2^{-n-1}) = f(\ell 2^{-n-1})$.

10a. Déduire de la question **9** que pour tout f de C_0 , $\lim_{n\to+\infty} ||f-S_n f||_{\infty} = 0$.

10b. Soit $n \in \mathbb{N}$. Montrer que S_n est un projecteur sur C_0 , dont la norme subordonnée (à $\|\cdot\|_{\infty}$) vaut 1.

11a. Soit $s \in]0,1[$. Montrer que si $a,b \geq 0$, alors $a^s + b^s \leq 2^{1-s}(a+b)^s$.

11b. Montrer que si $f \in \Gamma^s(x_0) \cap \mathcal{C}_0$, alors il existe un réel $c_1 > 0$, tel que pour tout $(j, k) \in \mathcal{I}$, on a,

$$|c_{j,k}(f)| \le c_1 \left(2^{-j} + |k2^{-j} - x_0|\right)^s$$
.

Troisième partie : minoration de l'exposant de Hölder ponctuel

L'objectif de cette partie est d'établir une forme de réciproque du résultat de la question 11b. Dans toute cette partie, on désigne par $f \in \mathcal{C}_0$ une fonction vérifiant la propriété suivante :

$$(\mathcal{P}_1)$$
 il existe $x_0 \in [0,1], s \in]0,1[$ et $c_1 \in]0,+\infty[$, tels que pour tout $(j,k) \in \mathcal{I},$

$$|c_{j,k}(f)| \le c_1 \left(2^{-j} + |k2^{-j} - x_0|\right)^s$$
.

Dans tout le reste de cette partie, on fixe les x_0 , s et c_1 de la propriété \mathcal{P}_1 et $x \in [0,1] \setminus \{x_0\}$.

- **12.** Montrer qu'il existe un unique $n_0 \in \mathbf{N}$ tel que $2^{-n_0-1} < |x-x_0| \le 2^{-n_0}$.
- 13. On rappelle que la notation $\tilde{k}_j(x)$ a été introduite en préambule de la deuxième partie. On pose

$$W_j = \sum_{k \in \mathcal{T}_j} |c_{j,k}(f)| \left| \theta_{j,k}(x) - \theta_{j,k}(x_0) \right|.$$

Montrer que

$$W_j \le \left(|c_{j,\widetilde{k}_j(x)}(f)| + |c_{j,\widetilde{k}_j(x_0)}(f)| \right) 2^{j+1} |x - x_0|.$$

14a. Montrer que pour $j \leq n_0$ (n_0 est déterminé dans la question **12**), on a

$$W_j \le 4c_1 2^{(1-s)j} 3^s |x - x_0|.$$

14b. En déduire que, en posant $c_2 = 8(2^{1-s} - 1)^{-1}(3/2)^s c_1$,

$$\sum_{j=0}^{n_0} \sum_{k \in \mathcal{T}_j} |c_{j,k}(f)| \left| \theta_{j,k}(x) - \theta_{j,k}(x_0) \right| \le c_2 |x - x_0|^s.$$

15. Montrer que pour tout $j\in \mathbf{N}, |c_{j,\widetilde{k}_j(x_0)}(f)|\leq 2^{s(1-j)}c_1$. En déduire, en posant $c_3=\left(1-2^{-s}\right)^{-1}2^sc_1$,

$$\sum_{j=n_0+1}^{+\infty} \sum_{k \in \mathcal{T}_j} |c_{j,k}(f)| |\theta_{j,k}(x_0)| \le c_3 |x - x_0|^s.$$

Dans la suite du problème, on suppose que $||f||_{\infty} = 1$ et on rappelle que la fonction ω_f a été définie à la question 3.

- **16.** Montrer qu'il existe un unique $n_1 \in \mathbf{N}$ tel que $\omega_f(2^{-n_1-1}) < 2^{-n_0s} \le \omega_f(2^{-n_1})$.
- 17. Montrer que pour tout $n \geq n_1$, où n_1 est déterminé dans la question 16, on a

$$||f - S_n f||_{\infty} \le 2^{s+1} |x - x_0|^s$$
.

On pourra utiliser les résultats des questions 9a et 9c.

18a. Montrer que lorsque $n_0 < n_1$, on a,

$$\sum_{j=n_0+1}^{n_1} \sum_{k \in \mathcal{T}_j} |c_{j,k}(f)| |\theta_{j,k}(x)| \le c_1 3^s (n_1 - n_0) |x - x_0|^s.$$

On suppose de plus dans la suite que la fonction ω_f vérifie la propriété suivante :

 (\mathcal{P}_2) pour tout entier $N \geq 1$, il existe un réel $c_4(N) > 0$, tel que pour tout $h \in]0,1]$,

$$\omega_f(h) \le c_4(N) (1 + |\log_2 h|)^{-N}$$
.

18b. Pour tout entier $N \geq 1$, on pose $c_5(N) = 3^s c_1 (c_4(N))^{1/N}$. Montrer que

$$n_1 - n_0 \le n_1 + 1 \le \left(\frac{c_4(N)}{\omega_f(2^{-n_1})}\right)^{\frac{1}{N}}$$

et en déduire

$$\sum_{j=n_0+1}^{n_1} \sum_{k \in \mathcal{T}_j} |c_{j,k}(f)| |\theta_{j,k}(x)| \le c_5(N) |x - x_0|^{(1 - \frac{1}{N})s}.$$

19. Déduire de ce qui précède que $\alpha_f(x_0) \geq s$.

On pourra distinguer les cas $n_0 \ge n_1$ et $n_0 < n_1$.

* *