ÉCOLE NORMALE SUPÉRIEURE

CONCOURS D'ADMISSION 2011

FILIÈRE MP

COMPOSITION DE MATHÉMATIQUES - D - (U)

(Durée: 6 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Dans tout le problème, le corps de base k est le corps $\mathbb R$ des nombres réels ou le corps $\mathbb C$ des nombres complexes.

Soit V un espace vectoriel sur le corps k. Par l'abus de notation habituel, on peut noter 0 le vecteur nul de V. On note $\mathcal{L}(V)$ l'algèbre des endomorphismes de V, c'est-à-dire des applications k-linéaires de V dans lui-même. On se permet de noter multiplicativement la composition des endomorphismes. Ainsi, si u est un endomorphisme de V, u^0 désigne l'application identique I_V de V et, pour tout entier strictement positif r, u^r est la composée de r endomorphismes égaux à u. On note tr(u) la trace de l'endomorphisme u, det(u) son déterminant. On dit que u est nilpotent s'il existe un entier strictement positif r tel que u^r soit nul.

Soit n un entier strictement positif. On désigne par $\mathcal{M}_n(k)$ l'algèbre des matrices carrées à n lignes et n colonnes, à coefficients dans k. On note I_n la matrice unité de $\mathcal{M}_n(k)$, qui en est l'élément neutre pour la multiplication. Pour A dans $\mathcal{M}_n(k)$, il sera commode de noter φ_A l'endomorphisme de l'espace vectoriel k^n dont la matrice dans la base canonique est A. Le noyau de A est le noyau de A. Le polynôme caractéristique de A est le déterminant de la matrice $XI_n - A$, où X est une indéterminée; c'est un polynôme en X à coefficients dans k, unitaire de degré n. On note tr(A) la trace de la matrice A et det(A) son déterminant. On dit que A est nilpotente si φ_A l'est, c'est-à-dire s'il existe un entier r strictement positif tel que A^r soit la matrice nulle. Si V est un espace vectoriel sur k de dimension n et n0 un endomorphisme de n0, le polynôme caractéristique de n0 est celui de la matrice de n0 dans n'importe quelle base; il ne dépend pas du choix de cette base.

La première et la deuxième partie du problème sont indépendantes.

Question préliminaire

Soit V un espace vectoriel sur k de dimension finie n strictement positive. Soit u un endomorphisme nilpotent de V. Prouver que le polynôme minimal de u est de la forme X^r , où r est un entier satisfaisant à $1 \le r \le n$, et que αu est nilpotent pour tout scalaire α .

Première partie

Dans cette partie, le corps de base k est \mathbb{R} . On note \mathbb{M} l'espace vectoriel réel $\mathbb{M}_2(\mathbb{R})$ et \mathbb{S} le sous-espace vectoriel de \mathbb{M} formé des matrices de trace nulle. On note \mathbb{N} l'ensemble des matrices nilpotentes de \mathbb{M} . C'est un cône dans \mathbb{M} , appelé le *cône nilpotent*.

- 1. Soit V un espace vectoriel réel de dimension 2 et soit u un endomorphisme de V nilpotent et non nul. Prouver qu'il existe une base (e_1, e_2) de V telle que $u(e_1) = 0$ et $u(e_2) = e_1$.
- 2. Soit A une matrice nilpotente non nulle dans M. Prouver que A est semblable à la matrice

$$\left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array}\right).$$

- 3. Établir que les éléments de $\mathbb N$ sont les matrices de $\mathbb M$ dont la trace et le déterminant sont nuls.
- 4. Quel est le sous-espace vectoriel de M engendré par N?
- 5. Soit Φ un automorphisme de l'espace vectoriel M tel que N contienne $\Phi(N)$. Démontrer que $\Phi(S)$ est égal à S.
- 6. Soit i l'application linéaire

$$\iota:(a,b,c)\longmapsto\left(egin{array}{cc}a&b\\c&-a\end{array}
ight).$$

Prouver que ι est un isomorphisme de \mathbb{R}^3 sur S. Démontrer que le cône nilpotent \mathbb{N} est l'image par ι du cône \mathbb{C} de \mathbb{R}^3 qui a pour équation $a^2 + bc = 0$.

- 7. Prouver que tout point non nul de \mathcal{C} est un point régulier de la surface \mathcal{C} et que le plan tangent à \mathcal{C} en un tel point P est formé des points Q de \mathbb{R}^3 tels que $\operatorname{tr}(\iota(P)\iota(Q))=0$.
- 8. Soit Q un point de \mathbb{R}^3 tel que la matrice $\iota(Q)$ soit diagonalisable non nulle. Prouver qu'il existe deux plans tangents à $\mathcal{C} \{0\}$ passant par Q. On les note Π_1 et Π_2 . Prouver que l'intersection de \mathcal{N} et de l'image de ces plans par ι , c'est-à-dire $\mathcal{N} \cap \iota(\Pi_1 \cup \Pi_2)$, est l'ensemble des matrices nilpotentes dont le noyau contient une des deux droites propres de $\iota(Q)$. [On pourra traiter d'abord le cas où $\iota(Q)$ est diagonale.]
- 9. Prouver que le complémentaire de \mathbb{C} dans \mathbb{R}^3 est la réunion de trois parties connexes par arcs, que ce sont des parties ouvertes de \mathbb{R}^3 et que l'une d'elles est formée des points Q de \mathbb{R}^3 tels que $\iota(Q)$ soit une matrice diagonalisable non nulle.

Deuxième partie

Dorénavant, le corps de base k est \mathbb{C} . On fixe un entier strictement positif n et un espace vectoriel complexe V de dimension n.

A Réduction d'un endomorphisme nilpotent

On fixe un endomorphisme nilpotent u de V. On note r le degré de son polynôme minimal, où $1 \le r \le n$, de sorte que V contient un vecteur x tel que $u^{r-1}(x) \ne 0$.

- **A.1.** Démontrer que les endomorphismes nilpotents de V sont les endomorphismes dont le polynôme caractéristique est X^n .
- **A.2.** Soit x un vecteur de V tel que $u^{r-1}(x) \neq 0$. Pour i un entier tel que $1 \leq i \leq r$, on pose $e_i = u^{i-1}(x)$. Prouver que les vecteurs e_1, \ldots, e_r de V sont linéairement indépendants et que le sous-espace vectoriel W qu'ils engendrent est stable par u. En notant u_W l'endomorphisme de W induit par u, écrire la matrice de u_W dans la base (e_1, \ldots, e_r) .
- **A.3.** On conserve les notations de la question précédente. Soit ℓ une forme linéaire sur V qui ne s'annule pas en e_r . Pour i un entier tel que $1 \le i \le r$, on pose $\varepsilon_i = \ell \circ u^{i-1}$. Prouver que les formes linéaires $\varepsilon_1, \ldots, \varepsilon_r$ sont linéairement indépendantes. Notant W' l'intersection des noyaux de ces formes, démontrer que W' est un supplémentaire de W dans V et que W' est stable par u. Que peut-on dire du polynôme minimal de l'endomorphisme $u_{W'}$ de W' induit par u?

Pour chaque entier strictement positif i, notons J_i la matrice suivante de $\mathcal{M}_i(\mathbb{C})$:

$$\begin{pmatrix}
0 & & & (0) \\
1 & \ddots & & & \\
& 1 & \ddots & & \\
& & \ddots & \ddots & \\
(0) & & 1 & 0
\end{pmatrix};$$

autrement dit, c'est la matrice dans la base canonique de \mathbb{C}^i de l'endomorphisme qui envoie chaque vecteur de cette base sur le suivant, sauf le dernier dont l'image est nulle.

- **A.4.** Par récurrence sur l'entier strictement positif n, prouver qu'il existe un entier strictement positif α , une suite finie d'entiers $\lambda = (\lambda_1, \dots, \lambda_{\alpha})$ satisfaisant à $\lambda_1 \geq \lambda_2 \geq \dots \geq \lambda_{\alpha} > 0$, et une base (e_1, \dots, e_n) de V tels que la matrice de u dans cette base soit la matrice J_{λ} diagonale par blocs dont les blocs successifs sont $J_{\lambda_1}, \dots, J_{\lambda_{\alpha}}$.
- **A.5.** Avec les notations de la question précédente, prouver que pour tout entier strictement positif i, l'entier dim $\ker u^i$ dim $\ker u^{i-1}$ est le cardinal de l'ensemble des entiers j tels que $1 \le j \le \alpha$ et $\lambda_j \ge i$. En déduire que dans la question précédente, les entiers $\alpha, \lambda_1, \ldots, \lambda_{\alpha}$ sont déterminés par u.
- **A.6.** On garde les notations de la question A.4. On note $\mathcal{C}(u)$ le commutant de u dans $\mathcal{L}(V)$, c'est-à-dire l'ensemble des endomorphismes v de V tels que uv = vu. Prouver que $\mathcal{C}(u)$ est un sous-espace vectoriel de $\mathcal{L}(V)$ de dimension $\sum_{i=1}^{\alpha} \lambda_i (2i-1)$.

[On pourra exprimer les conditions sur $v(e_1), \ldots, v(e_n)$ pour que l'on ait uv = vu.]

B Outils topologiques

Si E est un espace vectoriel complexe de dimension finie, toute norme sur E munit E d'une topologie : elle ne dépend pas du choix de cette norme, on l'appelle topologie naturelle de E. En particulier, on munit $\mathcal{M}_n(\mathbb{C})$ et l'espace $\mathbb{C}[X]_{\leq n}$, formé des polynômes de degré au plus n, de leur topologie naturelle.

On rappelle que si p est la dimension de E, si (e_1, \ldots, e_p) est une base de E et si x_1, \ldots, x_p sont les applications coordonnées dans cette base, une application ϕ d'un espace topologique T dans E est continue si et seulement si $x_i \circ \phi$ est continue pour tout entier i compris entre 1 et p. Une application linéaire d'un espace vectoriel complexe de dimension finie dans un autre est continue (pour les topologies naturelles).

B.1. Prouver que l'ensemble des applications continues de $\mathcal{M}_n(\mathbb{C})$ dans \mathbb{C} est stable par addition et multiplication : si f et g sont deux telles applications, les applications f+g et fg, qui à une matrice A de $\mathcal{M}_n(\mathbb{C})$ associent respectivement f(A) + g(A) et f(A)g(A), sont continues.

Soit B une matrice de $\mathcal{M}_n(\mathbb{C})$. Prouver que les applications de $\mathcal{M}_n(\mathbb{C})$ dans $\mathcal{M}_n(\mathbb{C})$, qui à une matrice A associent respectivement AB et BA, sont continues.

- **B.2.** Prouver que l'application de $\mathcal{M}_n(\mathbb{C})$ dans $\mathbb{C}[X]_{\leq n}$ qui à une matrice associe son polynôme caractéristique est une application continue. En particulier, l'application déterminant de $\mathcal{M}_n(\mathbb{C})$ dans \mathbb{C} est continue.
- **B.3.** Établir que l'ensemble $\mathbb N$ des matrices nilpotentes de $\mathcal M_n(\mathbb C)$ est une partie fermée de $\mathcal M_n(\mathbb C)$.
- **B.4.** Soient a, b, r des entiers strictements positifs et soit $\mathcal{M}_{a,b}(\mathbb{C})$ l'espace vectoriel des matrices à coefficients complexes qui ont a lignes et b colonnes. Cet espace est muni de la topologie naturelle. Prouver que la partie de $\mathcal{M}_{a,b}(\mathbb{C})$ formée des matrices de rang supérieur ou égal à r est ouverte.
- **B.5.** Soit $(A_i)_{i\geq 1}$ une suite de matrices de $\mathcal{M}_n(\mathbb{C})$ qui tend vers une matrice A lorsque i tend vers l'infini. Prouver que pour tout entier i assez grand, on a : $\dim \ker(A) \geq \dim \ker(A_i)$.

C Deux endomorphismes qui commutent

- **C.1.** Soit v un endomorphisme de V. Pour tout vecteur x de V, on note I_x l'ensemble des polynômes P de $\mathbb{C}[X]$ tels que P(v)(x) = 0. Prouver que I_x est un idéal de $\mathbb{C}[X]$ non réduit à $\{0\}$, et que son unique générateur unitaire μ_x divise le polynôme minimal de v. Pour un vecteur x de V, prouver l'équivalence des conditions suivantes :
 - (i) le polynôme μ_x est de degré n;
 - (ii) les vecteurs $x, v(x), \ldots, v^{n-1}(x)$ sont linéairement indépendants.

Si v est nilpotent, démontrer que ces conditions sont vérifiées si et seulement si il existe une base de V dans laquelle la matrice de v est la matrice J_n décrite avant la question A.4..

On dit que v est régulier s'il existe un vecteur x de V vérifiant ces conditions.

- **C.2.** Soit v un endomorphisme régulier de V. Prouver que les endomorphismes qui commutent à v sont les polynômes en v.
- **C.3.** Soit v un endomorphisme de V et soit w un endomorphisme $r\'{e}gulier$ de V. On fixe un vecteur x de V tel que $(x, w(x), \ldots, w^{n-1}(x))$ soit une base de V, que l'on notera \mathcal{B} . Prouver que $v + \varepsilon w$ est régulier pour tous les nombres complexes ε sauf peut-être un nombre fini d'entre eux.

- C.4. Soit v un endomorphisme de V. On suppose que dans une base \mathcal{B} de V, l'endomorphisme v a pour matrice la matrice J_{λ} de la question A.4. Soient c_1, \ldots, c_{α} des nombres complexes distincts deux à deux, et soit w l'endomorphisme de V ayant pour matrice dans la base \mathcal{B} la matrice diagonale par blocs dont les blocs successifs sont $c_1I_{\lambda_1}, \ldots, c_{\alpha}I_{\lambda_{\alpha}}$. Prouver que v+w est régulier.
- C.5. Soit u un endomorphisme nilpotent de V. Prouver qu'il existe un endomorphisme régulier w qui commute à u.
- **C.6.** Soit u un endomorphisme nilpotent de V et soit v un endomorphisme de V qui commute à u. On note A le sous-espace vectoriel de $\mathcal{L}(V)$ engendré par les endomorphismes u^iv^j lorsque i et j parcourent les entiers naturels. Prouver que A est de dimension au plus n. [On pourra traiter d'abord le cas où v est régulier et utiliser B.4. pour le cas général.]
- **C.7.** Soient u et v deux endomorphismes nilpotents de V qui commutent entre eux. On note B le sous-espace vectoriel de $\mathcal{L}(V)$ engendré par les endomorphismes $u^i v^j$ quand (i, j) parcourt les couples d'entiers naturels non tous deux nuls. Prouver que B est de dimension au plus n-1.
- **C.8.** Pour n=4, donner un exemple d'endomorphismes u et v comme dans la question C.7., tels que B soit de dimension 3 mais ne contienne aucun endomorphisme régulier. [On pourra chercher des endomorphismes dont la matrice dans une base donnée de V est triangulaire supérieure, à coefficients 0 ou 1.]

D Partitions

Une partition est une suite décroissante $(\lambda_i)_{i\geq 1}$ d'entiers, nuls à partir d'un certain rang. Si $\lambda = (\lambda_i)_{i\geq 1}$ est une partition, on note $|\lambda|$ la somme des entiers λ_i et on dit que λ est une partition de l'entier $|\lambda|$; enfin, on dit que λ_i est la part d'indice i de λ . Le diagramme de λ est l'ensemble des points de \mathbb{R}^2 dont les coordonnées (i,j) sont entières et satisfont à $i\geq 1$ et $1\leq j\leq \lambda_i$.

D.1. Soit λ une partition. Pour i entier strictement positif, on note μ_i le nombre d'entiers strictement positifs j tels que $i \leq \lambda_j$. Prouver que $\mu = (\mu_i)_{i \geq 1}$ est une partition et que l'on a $|\lambda| = |\mu|$.

On dit que μ est la partition conjuguée de λ et on la note λ' .

- **D.2.** Quelle est la transformation géométrique qui permet de passer du diagramme d'une partition λ à celui de λ' ? (Justifier.) Prouver que $(\lambda')' = \lambda$ pour toute partition λ .
- Si $\lambda = (\lambda_i)_{i \geq 1}$ et $\mu = (\mu_i)_{i \geq 1}$ sont deux partitions, on écrit $\mu \leq \lambda$ si l'on a $|\mu| = |\lambda|$ et si, pour tout entier i strictement positif, $\mu_1 + \dots + \mu_i \leq \lambda_1 + \dots + \lambda_i$.
- **D.3.** Prouver que la relation \leq est une relation d'ordre sur l'ensemble des partitions. Établir que la restriction de la relation \leq à l'ensemble des partitions de l'entier 6 n'est pas une relation d'ordre total.
- **D.4.** Soient $\lambda = (\lambda_i)_{i \geq 1}$ et $\mu = (\mu_i)_{i \geq 1}$ deux partitions; on suppose que $\mu \leq \lambda$ et que $\mu \neq \lambda$. Prouver qu'il existe une partition ν satisfaisant à $\mu \leq \nu \leq \lambda$, $\mu \neq \nu$, et telle que $\nu_i = \mu_i$ pour tous les entiers strictement positifs i sauf deux d'entre eux, i_0 et i_1 , pour lesquels on a : $\nu_{i_0} = \mu_{i_0} + 1$ et $\nu_{i_1} = \mu_{i_1} 1$.
- **D.5.** Soient λ et μ deux partitions. Prouver que les conditions $\mu \leq \lambda$ et $\lambda' \leq \mu'$ sont équivalentes.

E Topologie des classes de similitude

On note \mathcal{N} l'ensemble des matrices nilpotentes de $\mathcal{M}_n(\mathbb{C})$.

À chaque partition λ de n dont les parts non nulles sont $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_\alpha > 0$, on associe la matrice J_{λ} décrite dans la question A.4. et on note \mathcal{N}_{λ} l'ensemble des matrices de $\mathcal{M}_n(\mathbb{C})$ semblables à J_{λ} .

- **E.1.** Prouver que, quand λ parcourt l'ensemble des partitions de n, les parties \mathcal{N}_{λ} sont deux à deux disjointes et que \mathcal{N} est l'union des \mathcal{N}_{λ} . Prouver que si λ est une partition de n, l'adhérence de \mathcal{N}_{λ} dans l'espace vectoriel $\mathcal{M}_n(\mathbb{C})$ est une réunion de parties de la forme \mathcal{N}_{μ} .
- **E.2.** Soit λ une partition de n. Calculer $DJ_{\lambda}D^{-1}$ lorsque D est une matrice diagonale inversible de $\mathcal{M}_n(\mathbb{C})$. Prouver que la matrice nulle est dans l'adhérence de \mathcal{N}_{λ} . Soit \mathcal{N}^{reg} l'ensemble des matrices semblables à J_n , correspondant à la partition qui a une seule part non nulle, $(n,0,\ldots)$. Prouver que l'adhérence de \mathcal{N}^{reg} est \mathcal{N} et que \mathcal{N}^{reg} est une partie ouverte de \mathcal{N} .
- **E.3.** Soient λ et μ deux partitions de n. On suppose que l'adhérence de \mathbb{N}_{λ} contient \mathbb{N}_{μ} . Prouver que l'on $\mathbf{a} : \mu \leq \lambda$.

[On pourra utiliser en particulier les questions A.5. et B.5.]

- **E.4.** Supposons n pair, n=2m. Soient λ la partition $(m+1,m-1,0,\ldots)$ et μ la partition $(m,m,0,\ldots)$. Prouver que l'adhérence de \mathcal{N}_{λ} dans $\mathcal{M}_{n}(\mathbb{C})$ contient \mathcal{N}_{μ} . [Si $(e_{1},\ldots,e_{m+1},f_{1},\ldots,f_{m-1})$ est une base de \mathbb{C}^{n} et si u est l'endomorphisme qui a dans cette base la matrice J_{λ} , on pourra considérer les images de $e_{2}+f_{1}$ et εe_{1} par u et ses itérés, pour tout nombre complexe non nul ε .]
- **E.5.** Soit λ une partition de n. Montrer que l'adhérence de \mathcal{N}_{λ} dans $\mathcal{M}_{n}(\mathbb{C})$ est la réunion des \mathcal{N}_{μ} où μ parcourt l'ensemble des partitions de n telles que $\mu \leq \lambda$.

Fin de l'épreuve