Notations

Dans tout le problème, on notera \mathcal{C} l'ensemble des fonctions réelles définies sur [0,1] et continues par morceaux. On rappelle que $g \in \mathcal{C}$ signifie qu'il existe une subdivision de [0,1], $\{0 = x_1 < \cdots < x_N = 1\}$ telle que pour tout $i \in \{1,\ldots,N-1\}$, g soit continue sur chaque intervalle de la forme $]x_i, x_{i+1}[$, et qu'en plus g admettent des limites finies, notées $g(x_i + 0)$ et $g(x_{i+1} - 0)$ à gauche et droite de chacune des extrémités de ces intervalles.

Par ailleurs, on définit \mathcal{D} l'ensemble des fonctions réelles f continues sur [0,1] et de classe \mathcal{C}^1 par morceaux. Cela signifie que f est continue sur [0,1] et qu'il existe une subdivision de [0,1], $\{0=x_1<\dots< x_N=1\}$ telle que pour tout $i\in\{1,\dots,N-1\}$, f soit continûment dérivable sur chaque intervalle de la forme $]x_i,x_{i+1}[$, et qu'en plus f' admettent des limites finies, notées $f'(x_{i+1}-0)$ à gauche et droite de chacune des extrémités de ces intervalles.

Dans ces deux cas la partition $\{0 = x_1 < \dots < x_N = 1\}$ est appelée partition subordonnée à g (ou a f). On remarquera qu'il n'y a pas qu'une seule partition subordonnée à une fonction f donnée.

Enfin, on note $\mathcal{D}_0 = \{ u \in \mathcal{D}, u(0) = u(1) = 0 \}.$

Partie I

1.a) Soit $f \in \mathcal{D}$. Démontrer qu'il existe $g \in \mathcal{C}$ telle que

$$\forall x \in [0,1], \ f(x) = f(0) + \int_0^x g(s) \, ds. \tag{1}$$

Réciproquement, montrer que si $g \in \mathcal{C}$, la fonction définie par

$$\forall x \in [0,1], \ f(x) = \int_0^x g(s) \, ds$$

est un élément de \mathcal{D} .

- **1.b**) Soient $f \in \mathcal{D}$ et $g \in \mathcal{C}$ vérifiant (1). Montrer que si on note $\{x_1, \ldots, x_N\}$ une partition subordonnée à f, alors g est définie de manière unique sur $\bigcup_{i=1}^{N-1}]x_i, x_{i+1}[$. Dans toute la suite du problème, une fonction $g \in \mathcal{C}$ vérifiant (1) sera appelée une **dérivée** de f. pour tout f de \mathcal{D} on notera f' une dérivée de f.
- **1.c**) Montrer que si f_1 et f_2 sont deux fonctions de \mathcal{D} possédant restectivement des dérivées g_1 et g_2 , alors le produit f_1f_2 appartient à \mathcal{D} et admet $f_1g_2 + f_2g_1$ comme dérivée.
- **2**) Soit q dans C. Démontrer que

$$\int_0^1 g^2(x) \, dx \ge \left(\int_0^1 g(x) \, dx\right)^2$$

Indication: On pourra utiliser

$$\forall t \in \mathbb{R} \quad \int_0^1 (g(x) + t)^2 \, dx \ge 0.$$

Montrer aussi qu'il y a égalité si et seulement si il existe une constante C telle que g(x) = C sauf éventuellement en un nombre fini de points x de [0,1].

3) Soit g dans C. Montrer que la fonction f définie par

$$\forall x \in [0,1], \quad f(x) = \int_0^x g(s) \, ds - x \int_0^1 g(s) \, ds,$$

appartient à l'ensemble \mathcal{D}_0 .

4) Soit $g \in \mathcal{C}$, démontrer que g vérifie

$$\forall \theta \in \mathcal{D}_0, \quad \int_0^1 g(s)\theta'(s) \, ds = 0$$

si et seulement si il existe une constante C telle que g(x) = C sauf éventuellement en un nombre fini de points x de [0,1].

5) Soit $f, g \in \mathcal{C}$ vérifiant

$$\forall \theta \in \mathcal{D}_0, \quad \int_0^1 (f(s)\theta'(s) + g(s)\theta(s)) ds = 0.$$

Montrer qu'il existe $\tilde{f} \in \mathcal{D}$ telle que f coïncide avec \tilde{f} sauf éventuelllement en un nombre fini de points et que

$$\forall x \in [0, 1], \quad \tilde{f}(x) = \tilde{f}(0) + \int_0^x g(s) \, ds.$$

Observer de plus que si $g \in \mathcal{C}^0([0,1])$ alors $\tilde{f} \in \mathcal{C}^1([0,1])$.

Partie II

Pour tout $u \in \mathcal{D}_0$ et tout $\lambda \in \mathbb{R}^{*+}$, on note

$$E_{\lambda}(u) = \frac{1}{2} \int_{0}^{1} (u'(x))^{2} dx + \frac{\lambda}{4} \int_{0}^{1} (1 - (u(x))^{2})^{2} dx.$$

1) Montrer que $E_{\lambda}(u)$ est bien définie pour tout $u \in \mathcal{D}_0$ et qu'en particulier sa valeur ne dépend pas du choix possible de u' parmi les dérivées de u.

A partir de maintenant et jusqu'à la fin du problème, on admettra que pour tout $\lambda \in \mathbb{R}^{*+}$, le problème de minimisation

$$\min_{u \in \mathcal{D}_0} E_{\lambda}(u),\tag{2}$$

a au moins une solution que l'on notera u_{λ} . Ainsi u_{λ} vérifie

$$\begin{cases} u_{\lambda} \in \mathcal{D}_0, \\ \forall v \in \mathcal{D}_0 & E_{\lambda}(v) \ge E_{\lambda}(u_{\lambda}). \end{cases}$$

2.a) Soit $\psi \in \mathcal{D}_0$. Montrer que

$$\lim_{\epsilon \to 0, \epsilon \neq 0} \frac{E_{\lambda}(u_{\lambda} + \epsilon \psi) - E_{\lambda}(u_{\lambda})}{\epsilon} = \int_{0}^{1} u_{\lambda}'(x)\psi'(x) - \lambda(1 - (u_{\lambda}(x))^{2})u_{\lambda}(x)\psi(x) dx.$$

2.b) En déduire que u_{λ} vérifie

$$\forall \psi \in \mathcal{D}_0, \quad \int_0^1 u_\lambda'(x)\psi'(x) - \lambda(1 - (u_\lambda(x))^2)u_\lambda(x)\psi(x) \, dx = 0. \tag{3}$$

2.c) Montrer que u'_{λ} coïncide avec une fonction continue sauf éventuellement en un nombre fini de points. En déduire que u_{λ} est en fait de classe \mathcal{C}^1 et que sa dérivée au sens classique vérifie encore (3). Montrer que u_{λ} est de classe \mathcal{C}^2 et vérifie l'équation différentielle

$$-u_{\lambda}''(x) = \lambda (1 - (u_{\lambda}(x))^2) u_{\lambda}(x),$$

sur]0,1[, puis que u_{λ} est de classe \mathcal{C}^{∞} sur]0,1[.

2.d) Montrer qu'il existe une constante $C_{\lambda} \in \mathbb{R}$ telle

$$\forall x \in]0,1[, \quad (u'(x))^2 = \frac{\lambda}{2} (((u_{\lambda}(x))^2 - 1)^2 - C_{\lambda}).$$

Le problème continuait...